Internal-combustion engine

From WOI Encyclopedia Italia
Jump to navigation Jump to search
A colorized automobile engine


The internal combustion engine is a heat engine in which combustion occurs in a confined space called a combustion chamber. Combustion of the fuel charge inside a chamber causes a rapid rise in temperature and pressure of the gases in the chamber, which are permitted to expand. The expanding gases are used to move a piston, turbine blades, rotor, or the engine itself.

Internal combustion engines can be powered by any fuel that can be combined with an "oxidizer" in the chamber. Fuels used include gasoline (aka petrol), Liquified Petroleum Gas, Vapourized Petroleum Gas, Compressed Natural Gas, hydrogen, diesel fuel, JP18 (jet fuel), landfill gas, biodiesel, peanut oil, ethanol, methanol (methyl or wood alcohol), and hydrogen peroxide. Engines that use gases for fuel are called gas engines and those that use liquid hydrocarbons are called oil engines. However, gasoline engines are often called gas engines for short. The only limitations are that the fuel must be easily transportable through the fuel system to the combustion chamber, and that the fuel release sufficient energy in the form of heat upon combustion to make use of the engine practical.

By way of contrast, an external combustion engine such as a steam engine, does work when the combustion process heats a separate working fluid, such as water or steam, which then in turn does work.

Jet engines, most rockets and many gas turbines are strictly classed as internal combustion engines, but the term internal combustion engine is also used to refer specifically to reciprocating engines, Wankel engines and similar designs in which combustion is intermittent. Today, in some published discussions, internal combustion engine is abbreviated to the acronym ICE.

History

Early internal-combustion engines were used to power farm equipment.

In the broadest sense of the term, the internal combustion engine can be said to have been invented in China, with the invention of fireworks during the Song dynasty (some sources put the invention a thousand years earlier still). English inventor Sir Samuel Morland used gunpowder to drive water pumps in the 17th century. For more conventional, reciprocating internal combustion engines the fundamental theory for two-stroke engines was established by Sadi Carnot in France in 1824, whilst the American Samuel Morey received a patent on April 1, 1826 for a "Gas Or Vapor Engine".

The Italians Eugenio Barsanti and Felice Matteucci patented the first working, efficient version of an internal combustion engine in 1854 in London (pt. Num. 1072). In 1860, Jean Joseph Etienne Lenoir produced a gas-fired internal combustion engine not dissimilar in appearance to a steam beam engine. In 1870 in Vienna Siegfried Marcus put the first mobile gasoline engine on a handcart. Nikolaus Otto working with Gottlieb Daimler and Wilhelm Maybach in the 1870's developed the four-stroke cycle (Otto cycle) engine.

Applications

Internal combustion engines are most commonly used for mobile propulsion systems. In mobile scenarios internal combustion is advantageous, since it can provide high power to weight ratios together with excellent fuel energy-density. These engines have appeared in almost all cars, motorbikes, many boats, and in a wide variety of aircraft and locomotives. Where very high power is required, such as jet aircraft, helicopters and large ships, they appear mostly in the form of gas turbines. They are also used for electric generators and by industry.

For low power mobile and many non-mobile applications an electric motor is a competitive alternative. In the future, electric motors may also become competitive for most mobile applications. However, the high cost and weight and poor energy density of batteries and lack of affordable onboard electric generators such as fuel cells has largely restricted their use to specialist applications.

Parts

An illustration of several key components in a typical four-stroke engine

The parts of an engine vary depending on the engine's type. For a four-stroke engine, key parts of the engine include the crankshaft (purple), one or more camshafts (red and blue) and valves. For a two-stroke engine, there may simply be an exhaust outlet and fuel inlet instead of a valve system. In both types of engines, there are one or more cylinders (grey and green) and for each cylinder there is a spark plug (darker-grey), a piston (yellow) and a crank (purple). A single sweep of the cylinder by the piston in an upward or downward motion is known as a stroke and the downward stroke that occurs directly after the air-fuel mix in the cylinder is ignited is known as a power stroke.

A Wankel engine has a triangular rotor that orbits in an epitroichoidal (figure 8 shape) chamber around an eccentric shaft. The four phases of operation (intake, compression, power, exhaust) take place in separate locations, instead of one single location as in a reciprocating engine.

A Bourke engine uses a pair of pistons integrated to a scotch yoke that transmits reciprocating force through a specially designed bearing assembly to turn a crank mechanism. Intake, compression, power, and exhaust all occur in each stroke of this yoke.

Operation

All internal combustion engines depend on the exothermic chemical process of combustion: the reaction of a fuel, typically with air, although other oxidisers such as nitrous oxide may be employed. Also see stoichiometry.

The most common fuels in use today are made up of hydrocarbons and are derived from petroleum. These include the fuels known as diesel, gasoline and liquified petroleum gas. Most internal combustion engines designed for gasoline can run on natural gas or liquified petroleum gases without modifications except for the fuel delivery components. Liquid and gaseous biofuels of adequate formulation can also be used.

Some have theorized that in the future hydrogen might replace such fuels. Furthermore, with the introduction of hydrogen fuel cell technology, the use of internal combustion engines may be phased out. The advantage of hydrogen is that its combustion produces only water. This is unlike the combustion of hydrocarbons, which also produces carbon dioxide, a major cause of global warming, as well as carbon monoxide, resulting from incomplete combustion. The big disadvantage of hydrogen in many situations its storage. Liquid hydrogen has extremely low density- 14 times lower than water and requires extensive insulation, whilst gaseous hydrogen requires very heavy tankage. While hydrogen is light and therefore has a higher specific energy, the volumetric efficiency is still roughly five times lower than petrol. This is why hydrogen must be compressed if there is to be a useful amount of stored energy.

All internal combustion engines must have a means of ignition to promote combustion. Most engines use either an electrical or a compression heating ignition system. Electrical ignition systems generally rely on a lead-acid battery and an induction coil to provide a high voltage electrical spark to ignite the air-fuel mix in the engine's cylinders. This battery can be recharged during operation using an alternator driven by the engine. Compression heating ignition systems (Diesel engines and HCCI engines) rely on the heat created in the air by compression in the engine's cylinders to ignite the fuel.

Once successfully ignited and burnt, the combustion products (hot gases) have more available energy than the original compressed fuel/air mixture (which had higher chemical energy). The available energy is manifested as high temperature and pressure which can be translated into work by the engine. In a reciprocating engine, the high pressure product gases inside the cylinders drive the engine's pistons.

Once the available energy has been removed the remaining hot gases are vented (often by opening a valve or exposing the exhaust outlet) and this allows the piston to return to its previous position (Top Dead Center - TDC). The piston can then proceed to the next phase of its cycle (which varies between engines). Any heat not translated into work is a waste product and is removed from the engine either by an air or liquid cooling system.

Classification

There is a wide range of internal combustion engines corresponding to their many varied applications. Likewise there is a wide range of ways to classify internal-combustion engines, some of which are listed below.

Although the terms sometimes cause confusion, there is no real difference between an "engine" and a "motor." At one time, the word "engine" (from Latin, via Old French, ingenium, "ability") meant any piece of machinery. A "motor" (from Latin motor, "mover") is any machine that produces mechanical power. Traditionally, electric motors are not referred to as "engines," but combusion engines are often referred to as "motors."

Principles of operation

A 1906 gasoline engine

Reciprocating:

Rotary:

Continuous combustion:

Engine cycle

Engines based on the two-stroke cycle use two strokes (one up, one down) for every power stroke, relying on the action of the bottom of the piston within the crankcase to help move the fuel-air mixture, and are used where small size and weight are important, such as snowmobiles, lawnmowers, mopeds, outboard motors and some motorcycles. Gasoline two-stroke engines are generally louder, less efficient, more polluting, and smaller than their four-stroke counterparts, although large two-stroke diesel engines are not subject to these complaints and are used in many applications, for instance some locomotives built by EMD.

Engines based on the four-stroke cycle or Otto cycle have one power stroke for every four strokes (up-down-up-down) and are used in cars, larger boats and many light aircraft. They are generally quieter, more efficient and larger than their two-stroke counterparts. There are a number of variations of these cycles, most notably the Atkinson and Miller cycles. Most truck and automotive Diesel engines use a four-stroke cycle, but with a compression heating ignition system it is possible to talk separately about a diesel cycle. The Wankel engine operates with the same separation of phases as the four-stroke engine (but with no piston strokes, would more properly be called a four-phase engine), since the phases occur in separate locations in the engine; however like a two-stroke piston engine, it provides one power 'stroke' per revolution per rotor, giving it similar space and weight efficiency. The Bourke cycle's combustion phase more closely approximates constant volume combustion than either four stroke or two stroke cycles do. It also uses less moving parts, hence needs to overcome less friction than the other two reciprocating types have to. In addition, its greater expansion ratio also means more of the heat from its combustion phase is utilized than is used by either four stroke or two stroke cycles.

Fuel type

Diesel engines are generally heavier, noisier and more powerful at lower speeds than gasoline engines. They are also more fuel-efficient in most circumstances and are used in heavy road-vehicles, some automobiles, ships and some locomotives and light aircraft. Gasoline engines are used in most other road-vehicles including most cars, motorcycles and mopeds. Note that in Europe, sophisticated diesel-engined cars are far more prevalent, representing around 40% of the market. Both gasoline and diesel engines produce significant emissions. There are also engines that run on hydrogen, methanol, ethanol, liquefied petroleum gas (LPG) and biodiesel. Paraffin and Tractor vaporising oil (TVO) engines are no longer seen.

One-cylinder gasoline engine (c. 1910).

Cylinders

Internal combustion engines can contain any number of cylinders with numbers between one and twelve being common, though as many as 28 have been used. Having more cylinders in a engine yields two potential benefits: First. the engine can have a larger displacement with smaller individual reciprocating masses (that is, the mass of each piston can be less) thus making a smoother running engine (since the engine tends to vibrate as a result of the pistons moving up and down). Second, with a greater displacement and more pistons, more fuel can be combusted and there can be more combustion events (that is, more power strokes) in a given period of time, meaning that such an engine can generate more torque than a similar engine with fewer cylinders. The down side to having more pistons is that, over all, the engine will tend to weigh more and tend to generate more internal friction as the greater number of pistons rub against the inside of their cylinders. This tends to decrease fuel efficiency and rob the engine of some of its power. For high performance gasoline engines using current materials and technology (such as the engines found in modern automobiles), there seems to be a break point around 10 or 12 cylinders, after which addition of cylinders becomes an overall detriment to performance and efficiency, although exceptions such as the W-16 engine from Volkswagen exist.

  • Most car engines have four to eight cylinders, with some high performance cars having ten, twelve, or even sixteen, and some very small cars and trucks having two or three. In previous years some quite large cars, such as the DKW and Saab 92, had two cylinder, two stroke engines.
  • Radial aircraft engines, now obsolete, had from five to 28 cylinders. A row contains an odd number of cylinders, so an even number indicates a two- or four-row engine.
  • Motor cycles commonly have from one to four cylinders, with a few high performance models having six.
  • Snowmobiles usually have two cylinders. Some larger (not necessarily high-performance, but also touring machines) have four.
  • Small appliances such as chainsaws and domestic lawn mowers most commonly have one cylinder, although two-cylinder chainsaws exist.

Ignition system

Internal combustion engines can be classified by their ignition system. Today most engines use an electrical or compression heating system for ignition. However outside flame and hot-tube systems have been used historically. Nikola Tesla gained one of the first patents on the mechanical ignition system with Template:US patent, "Electrical Igniter for Gas Engines", on 16 August 1898.

Fuel systems

Often for simpler reciprocating engines a carburetor is used to supply fuel into the cylinder. However, exact control of the correct amount of fuel supplied to the engine is impossible.

Larger gasoline engines such as used in cars have mostly moved to Fuel injection systems. LPG engines use a mix of Fuel injection systems and closed loop carburetors. Diesel engines always use fuel injection.

Other internal combustion engines like Jet engines use burners, and rocket engines use various different ideas including impinging jets, gas/liquid shear, preburners and many other ideas.

Engine configuration

Internal combustion engines can be classified by their configuration which affects their physical size and smoothness (with smoother engines producing less vibration). Common configurations include the straight or inline configuration, the more compact V configuration and the wider but smoother flat or boxer configuration. Aircraft engines can also adopt a radial configuration which allows more effective cooling. More unusual configurations, such as "H", "U", "X", or "W" have also been used.

Multiple-crankshaft configurations do not necessarily need a cylinder head at all, but can instead have a piston at each end of the cylinder, called an opposed piston design. This design was used in the Junkers Jumo 205 diesel aircraft engine, using two crankshafts, one at either end of a single bank of cylinders, and most remarkably in the Napier Deltic diesel engines, which used three crankshafts to serve three banks of double-ended cylinders arranged in an equilateral triangle with the crankshafts at the corners. It was also used in single-bank locomotive engines, and continues to be used for marine engines, both for propulsion and for auxiliary generators. The Gnome Rotary engine, used in several early aircraft, had a stationary crankshaft and a bank of radially arranged cylinders rotating around it.

Engine capacity

An engine's capacity is the displacement or swept volume by the pistons of the engine. It is generally measured in litres or cubic inches for larger engines and cubic centimetres (abbreviated to cc's) for smaller engines. Engines with greater capacities are usually more powerful and provide greater torque at lower rpms but also consume more fuel.

Apart from designing an engine with more cylinders, there are two ways to increase an engine's capacity. The first is to lengthen the stroke and the second is to increase the piston's diameter. In either case, it may be necessary to make further adjustments to the fuel intake of the engine to ensure optimal performance.

An engine's quoted capacity can be more a matter of marketing than of engineering. The Morris Minor 1000, the Morris 1100, and the Austin-Healey Sprite Mark II all had engines of the same stroke and bore according to their specifications, and were from the same maker. However the engine capacities were quoted as 1000cc, 1100cc and 1098cc respectively in the sales literature and on the vehicle badges.

Engine pollution

Generally internal combustion engines, particularly reciprocating internal combustion engines, produce moderately high pollution levels, due to incomplete combustion of carbonaceous fuel, leading to carbon monoxide and some soot along with oxides of nitrogen & sulphur and some unburnt hydrocarbons depending on the operating conditions and the fuel/air ratio.

Diesel engines produce a wide range of pollutants including aerosols of many small particles that are believed to penetrate deeply into human lungs.

  • Many fuels contain sulfur leading to sulfur oxides (SOx) in the exhaust, promoting acid rain.
  • The high temperature of combustion creates greater proportions of nitrogen oxides (NOx), demonstrated to be hazardous to both plant and animal health.
  • Net carbon dioxide production is not a necessary feature of engines, but since most engines are run from fossil fuels this usually occurs. If engines are run from biomass, then no net carbon dioxide is produced as the growing plants absorb as much, or more carbon dioxide while growing.
  • Hydrogen engines only produce water, in theory.

External links